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1 Introduction

The moduli space of supersymmetric D-branes typically depends on the closed string back-

ground of the setup, and its dimension and structure may change drastically as one varies

the background. One interesting effect that may happen is that a supersymmetric D-brane

may cease to be supersymmetric upon a small closed string perturbation that preserves

the supersymmetry of the closed string. In this case one usually says that there is an

obstruction for adjusting the D-brane to the closed string deformation. Another even more

drastic effect is that the D-brane may decay into a superposition of D-branes; this is what

happens as one crosses a line of marginal stability. Both phenomena occur for supersym-

metric D-branes in type II compactifications on Calabi-Yau manifolds. In this case, the

combined bulk-boundary moduli space has a space-time interpretation in terms of F-terms

and D-terms of the low-energy theory. F-term constraints are related to preserving an

extended world-sheet supersymmetry (and hence to the absence of obstructions), whereas

the requirement of conformal invariance and charge integrality (that controls the lines of

marginal stability) is encoded in the D-terms.

In this paper we study these phenomena from a world-sheet point of view for theories

with different amounts of supersymmetry. In particular, we shall concentrate on two cases:

theories with N = 1 spacetime supersymmetry in four dimensions, in which case the

corresponding world-sheet theory is an N = 2 superconformal field theory [1], and theories

with N = 1 spacetime supersymmetry in six dimensions (which corresponds to N = 2

spacetime supersymmetry in four dimensions), in which case the world-sheet theory has an

N = 4 superconformal symmetry with c = 6 [2]. In each case we shall give a world-sheet

interpretation of obstructions and lines of marginal stability. One of our main results is

that for D-branes that preserve the N = 4 superconformal symmetry with c = 6 — this is

in particular the case for half-supersymmetric branes on K3 — obstructions cannot occur.

There are two natural and successful approaches to the analysis of world-sheet the-

ories. First one may regard them as 2-dimensional supersymmetric field theories using

superspace techniques, but without using the conformal symmetry. In this formulation the

supersymmetry variation of the closed string perturbation is proportional to the integral of

a total derivative. On world-sheets without boundary these perturbations thus preserve su-

persymmetry, but in the presence of D-branes (i.e. world-sheets with boundaries) the total

derivatives may lead to non-trivial boundary terms. Such non-trivial boundary terms can

sometimes be cancelled against the supersymmetry variation of a correction term involving

boundary fields [3]. However, the boundary theory may not contain a suitable boundary

field, so that such a resolution is impossible. If this is the case, the corresponding D-brane

is obstructed against the closed string perturbation. As we shall explain, for world-sheet

theories with N = 2 supersymmetry, B-type branes may be obstructed in this way against

chiral perturbations, but not against twisted chiral perturbations. On the other hand,

there are no such obstructions for world-sheet theories with N = 4 supersymmetry.

This analysis can capture obstructions, but it does not detect the potential presence

of lines of marginal stability. In order to study the latter one also has to take into account

the conformal symmetry; thus one is led to employ techniques of perturbed conformal
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field theory. In this approach deformations of the closed string background correspond to

perturbations of the conformal field theory by exactly marginal bulk fields. In the situation

with N = 2 superconformal world-sheet symmetry, the corresponding bulk fields are either

(cc), (ca), (ac) or (aa) fields [4, 5]. These fields are always exactly marginal on world-

sheets without boundary. In the presence of boundaries, however, they may cease to be

exactly marginal. If this is the case they induce an RG flow on the boundary that drives the

brane to a configuration that is compatible with the deformed closed string background [6];

the bulk theory itself remains unaffected unless one also includes the backreaction of the

brane [7]. A typical example of such an RG flow is what happens when one crosses a line

of marginal stability in the moduli space.

At a generic point of the moduli space, far away from lines of marginal stability, no such

RG flow is induced, and thus the boundary condition remains conformal. Nevertheless the

bulk perturbation will generically modify the gluing conditions of the symmetry algebra,

including those that describe how the supercharges are to be identified at the boundary.

For N = 2 superconformal B-type branes it may happen that a (cc) perturbation breaks

the N = 2 superconformal symmetry at the boundary, i.e. that the brane is obstructed.

On the other hand, if the bulk and boundary theory are N = 4 superconformal with

c = 6, then we can show that the change in the gluing condition for the N = 2 (or

N = 4 generators) under a (cc) perturbation can always be absorbed into a redefinition of

the gluing conditions that identify the left- and right-moving supercharges. Thus N = 4

superconformal branes are not obstructed under such perturbations.

The paper is organised as follows. In section 2 we analyse the problem from a field

theory point of view. In particular, in section 2.1 we use an N = 2 superspace formulation

to explain how obstructions may arise for N = (2, 2) supersymmetric theories. Section 2.2

then deals with the case of N = (4, 4) supersymmetry. The conformal field theory approach

is described in section 3. Sections 3.2 and 3.3 deal with the case of N = 2 B-type branes

under (cc) and (ac) perturbations, respectively. The analysis for the case with N = 4

superconformal symmetry is described in section 3.4. We illustrate our findings in section 4

with two examples, a simple brane configuration on a T 4 torus, as well as a D-brane on

K3 at the orbifold point T 4/Z4. Finally, section 5 contains our conclusions. There are two

appendices where some of the more technical material is described: appendix A gives a

detailed account of our superspace conventions, in particular of the harmonic superspace

that is used in the N = (4, 4) case. In appendix B we discuss constraints on the fusion

rules of N = 2 and N = 4 chiral primary operators.

2 The superspace analysis

In this section we analyse the problem of brane obstructions under deformations by bulk

moduli, formulating the theory in terms of an action in superspace. In a first step we

will review the situation with N = (2, 2) supersymmetry, using an N = (2, 2) superspace

formulation, see [8, 9]. In section 2.2 we shall then consider the situation with N = (4, 4)

supersymmetry.

– 3 –
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2.1 The N = 2 analysis

Let us begin by describing the two-dimensional world-sheet theory in standard N = (2, 2)

superspace

R
(1,1|2,2) = R

(1|2)
L × R

(1|2)
R = {x+, θ+, θ̄+} × {x−, θ−, θ̄−} , (2.1)

where the two factors represent the two light-cone sectors. Our conventions follow [9], and

are described in appendix A.1. We parametrise an arbitrary supervariation as

δ = ǫ+Q− − ǫ−Q+ − ǭ+Q̄− + ǭ−Q̄+ . (2.2)

Here the signs are chosen so that δ is a hermitian operator. In order to study the super-

variation in the presence of a boundary we need to specify which linear combinations of

the supercharges are preserved at the boundary. We shall always take the boundary to be

along the line x+ = x−, and we shall always consider B-type boundary conditions

ǫ ≡ ǫ+ = −ǫ− , ǭ ≡ ǭ+ = −ǭ− . (2.3)

For this boundary condition we shall then study chiral and twisted chiral deformations

(that correspond to (cc) and (ac) deformations, respectively). Note that this then covers

already the general case since mirror symmetry exchanges A-type1 and B-type boundary

conditions, as well as chiral and twisted chiral perturbations.

It will turn out that in both cases supervariations will only close up to total derivatives,

leading to boundary contributions which must be cancelled by introducing new terms

involving fields on the boundary. For twisted chiral perturbations this can always be

achieved by using bulk fields that are taken to the boundary. For chiral perturbations,

on the other hand, we will in general need bona fide boundary fields that do not come

from the bulk. It is however not a priori clear that the boundary spectrum contains the

appropriate fields; if it does not, then we cannot cancel the boundary contribution of the

supersymmetry variation, and the brane will be obstructed.

2.1.1 Chiral deformations

Suppose now that we consider the variation of the (bulk) action by a chiral superfield, i.e.

by the term

∆S =

∫
d2x dθ−dθ+ Φ|θ̄±=0 . (2.4)

From the conformal field theory point of view to be described below, this corresponds to a

(cc) deformation. If we write out the superfield in components as in (A.4), then ∆S equals

∆S =

∫
d2xF (x±) . (2.5)

We are interested in the supersymmetry variation described by δ of this perturbation. To

this end we calculate

δ∆S =

∫
d2x dθ−dθ+

(
ǫ+Q− − ǫ−Q+ − ǭ+Q̄− + ǭ−Q̄+

)
Φ . (2.6)

1In distinction to (2.3) A-type boundary conditions are given by ǫ ≡ ǫ+ = ǭ− and ǭ ≡ ǭ+ = ǫ−.
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It is easy to see that the terms involving Q± act trivially. To evaluate the other two terms

we use that D̄±Φ = 0, and thus find

δ∆S =

∫
d2x dθ−dθ+

(
2iǭ+θ

−∂−Φ − 2iǭ−θ
+∂+Φ

)

= −2i

∫
d2x (ǭ−∂+ψ− + ǭ+∂−ψ+) . (2.7)

The last term is a total derivative and thus vanishes on a world-sheet without boundary.

In the presence of a boundary along x1 = 0, the ∂1 derivative gives the contribution

δ∆S = −i

∫

x1=0
dx0 (ǭ−ψ− − ǭ+ψ+) . (2.8)

The full perturbation we are interested in contains also the complex conjugate of (2.4),

namely

∆S =

∫
d2x dθ̄+dθ̄− Φ̄

∣∣
θ±=0

, (2.9)

where Φ̄ is the complex conjugate of Φ, and thus defines an anti-chiral superfield. By

a similar calculation to the above (using the expansion of the anti-chiral superfield Φ̄ as

in (A.6)) one finds that

δ∆S = 2i

∫
d2x dθ̄+dθ̄−

(
ǫ+θ̄

−θ̄+∂−ψ̄+ − ǫ−θ̄
+θ̄−∂+ψ̄−

)

= i

∫

x1=0
dx0

(
ǫ−ψ̄− − ǫ+ψ̄+

)
. (2.10)

Altogether the supersymmetry variation of the total chiral deformation equals

δ(∆S + ∆S) = i

∫

x1=0
dx0

(
ǭ+ψ+ − ǭ−ψ− + ǫ−ψ̄− − ǫ+ψ̄+

)
. (2.11)

Using the explicit form of the B-type boundary conditions (2.3) this can be rewritten as

δ(∆S + ∆S) = i

∫

x1=0
dx0

(
−ǫ(ψ̄+ + ψ̄−) + ǭ(ψ+ + ψ−)

)

= −i

∫

x1=0
dx0dθ̄ ǫ Φ̄ + i

∫

x1=0
dx0dθ ǭΦ , (2.12)

where we used the B-type conditions to define the boundary Grassmann variables θ = θ++

θ− and θ̄ = θ̄++θ̄−. In general, this term cannot be cancelled by a boundary term involving

only bulk fields. Thus B-type branes may be obstructed under (cc) deformations. From a

space-time point of view, this reflects the fact that the (cc) fields enter the superpotential

W , and allowed motions in parameter space are constrained to the zero locus of ∂W . Note

also that the (cc) fields as well as the B-type boundary conditions survive the topological

B-twist; thus the (holomorphic) superpotential W is calculable in the topological B-model.

Sometimes it is possible to preserve the full N = 2 by introducing additional boundary

degrees of freedom with appropriate supersymmetry transformations. This has, in particu-

lar, been done in the context of Landau Ginzburg models [10, 11] (for a review see [12, 13]).

– 5 –
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In some situations, however, even this is not enough to preserve N = 2 supersymmetry, as

can be seen for example in [14, 15]. While the N = 2 supersymmetry may thus be broken

by the deformation, it is always possible to cancel the variation of the N = 1 supersym-

metry variation that corresponds to ǫ = ǭ. In fact, since the N = 1 supersymmetry is a

gauge symmetry in string theory, this is crucial for the consistency of the perturbation.

The boundary term that cancels the N = 1 variation is simply given by

B = −i

∫

x1=0
dx0(φ− φ̄) , (2.13)

whose variation yields

δB = −i

∫

x1=0
dx0

(
ǫ(ψ+ + ψ−) − ǭ(ψ̄+ + ψ̄−)

)
. (2.14)

This indeed cancels (2.12) for ǫ = ǭ.

2.1.2 Twisted chiral deformations

The other possibility is that we modify the action by a twisted chiral perturbation (corre-

sponding to an (ac) field)

∆S =

∫
d2x dθ̄−dθ+ U |θ̄+=θ−=0 , (2.15)

where U is a twisted chiral supermultiplet. Since the calculation of the supersymmetry

variation proceeds much like in the case of the twisted perturbation, we will omit the

details. The resulting boundary term is

δ∆S = i

∫

x1=0
dx0 (ǫ+χ+ − ǭ−χ̄−) . (2.16)

Combining this with its complex conjugate, one obtains

δ(∆S + ∆S) = i

∫

x1=0
dx0 (ǫ+χ+ − ǭ−χ̄− − ǭ+χ̄+ + ǫ−χ−) . (2.17)

This boundary term can always be cancelled by adding the boundary integral

B = −i

∫

x1=0
dx0(v − v̄) , (2.18)

where v is the lowest component of the twisted chiral superfield, while its complex conjugate

v̄ is the lowest component of the twisted anti-chiral superfield (see appendix A.1). Indeed,

the variation of (2.18) cancels precisely (2.17). This ties in with the expectation that B-

type branes are never obstructed against (ac) deformations [16]. The complete story is

however more complicated since there are in general lines of marginal stability in the (ac)

moduli space along which D-branes will decay [17–19]. We will return to this phenomenon

in section 3.

– 6 –
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2.2 Theories with N = 4

We now wish to generalise the results of the previous section to cases where N = (2, 2)

supersymmetry is enhanced to N = (4, 4). We shall discuss the problem using an N = 4

superspace formulation. Different N = 4 superspace formulations are known, in partic-

ular projective superspace [20–23], harmonic superspace [24, 25], as well as conventional

N = (4, 4) superspace using constrained superfields [26]. In the following we shall employ

harmonic superspace; some technical details can be found in appendix A.2 (see also [27–

30]).

2.2.1 N = 4 harmonic superspace

The simplest way to enhance the superspace (2.1) to N = (4, 4) is to promote all Grassmann

coordinates to doublets under an SU(2) × SU(2) R-symmetry group2

R
(1,1|4,4) = R

(1|4)
L × R

(1|4)
R = {x+, θa

i } × {x−, θā
ı̄ } , (2.19)

where i, ı̄ = 1, 2 and the index a and ā distinguishes spinors from their conjugates

(see (A.20)). The explicit construction of (off-shell) superfields on R
(1,1|4,4) is a rather

delicate issue (see e.g. [26]), and we therefore prefer to formulate our theory on a slightly

modified (harmonic) superspace. To this end we define

H
(1,1+4|4,4) = R

(1,1|4,4) ×
SU(2)L
U(1)L

×
SU(2)R
U(1)R

= {x+, θa(±,0), u
(±,0)
i } × {x−, θā(0,±), u

(0,±)
ı̄ } ,

(2.20)

where we have introduced new variables

{u
(±,0)
i } ∈

SU(2)L
U(1)L

and {u
(0,±)
ı̄ } ∈

SU(2)R
U(1)R

. (2.21)

The SU(2) properties of these variables become apparent if one writes them in matrix

form like in (A.26). The essential idea is now to identify these groups with the left- and

right-moving SU(2)f , respectively.3 This allows us to define new Grassmann variables via

projection with the harmonic variables

θa(±,0) = θa
i u

(±,0),i, and θā(0,±) = θ̄ā
ı̄ u

(0,±),̄ı , (2.22)

(for more details see appendix A.3). In these conventions, the analogue of the supervaria-

tion (2.2) takes the form

δ = ǫa(−,0)Q(+,0)
a + ǫa(+,0)Q(−,0)

a + ǫā(0,−)Q
(0,+)
ā + ǫā(0,+)Q

(0,−)
ā . (2.23)

2In the following we shall drop the superscripts ± of the Grassmann variables in order to avoid cluttering

our formulae. Note that the Grassmann variables also transform as doublets with respect to another SU(2).

We shall call the former SU(2) action (which acts on the indices i and ı̄) ‘flavour’ SU(2)f , while the latter

SU(2) (rotating the indices a and ā) will be referred to as ‘colour’ SU(2)c. This notation follows the

nomenclature of [31].
3The actual construction of H

(1,1+4|4,4) as a coset space is a little bit more involved and will not be

presented here since it is only of minor importance for the rest of this work. A detailed description of the

construction can however, for example, be found in [30] (see also [32]).

– 7 –
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We also need to formulate the N = 4 analogue of the chiral and twisted-chiral de-

formations of the N = 2 theory which we have discussed in section 2.2. In the N = 4

language, both deformations can be described in a unified manner as (see [24])

Sdef =

∫
d2x

∫
du(±,0)

∫
du(0,±)

∫
d2θ(+,0)

∫
d2θ(0,+)θa(+,0)θā(0,+)ζaāΦ

(+,+) , (2.24)

where ζaā is a parameter which essentially picks out various components of the N = 4

superfield. Notice that upon focusing on a specific N = (2, 2) subalgebra, these components

can be precisely identified with the (cc), (ac), (ca) and (aa) perturbations which we have

discussed in section 2.1. Note also that the integrand of this superspace integral contains

explicitly the Grassmann variables, which naively indicates that the deformation does not

preserve supersymmetry (even without boundaries). However, given the special properties

of the superfields Φ(+,+) and the fact that ζaā is a u-independent constant, the above

terms are actually supersymmetric. One way to see this is to rewrite (2.24) in component

language. We first perform the Grassmann integration in (2.24) which yields

Sdef =

∫
d2x

∫
du(±,0)

∫
du(0,±)

∫
d2θ(+,0)

∫
d2θ(0,+)θa(+,0)θā(0,+) ζaā Φ(+,+)

=

∫
d2x

∫
du(±,0)

∫
du(0,±)

∫
dθ(+,0)

a

∫
dθ

(0,+)
ā ζaā Φ(+,+)∣∣θa(+,0)=θā(0,+)=0

=

∫
d2x

∫
du(±,0)

∫
du(0,±) ζaā F

aā. (2.25)

Since the integrand is independent of the harmonic variables the
∫
du(±,0) and

∫
du(0,±)

integrals are trivial, and the deformation can be written as

Sdef =

∫
d2x ζaā F

aā . (2.26)

In particular, this term has the same structure as the N = 2 terms (2.5) or (2.15). Since

the supervariaton of F aā is a total derivative

δF aā = 2i ǫai ∂+ψ
iā + 2i ǫāı̄ ∂−ψ

ı̄a , (2.27)

it is now obvious that (2.26) is in fact invariant under supersymmetry transformations (at

least as long as there are no boundaries).

2.2.2 Boundary conditions and deformations

Before we can study the behaviour of boundary conditions under these bulk deformations

we need to review the structure of the N = 4 preserving boundary conditions. The

automorphism (R-symmetry) group of the N = 4 algebra is SU(2)c × SU(2)f ∼= SO(4).

Thus a general N = 4 preserving boundary condition will be labelled by an element in this

group, where the corresponding automorphism describes how the left- and right-moving

supercharges are identified at the boundary x+ = x−.

In the context of string theory, not all such boundary conditions are of interest. This

comes from the fact that the overall N = (1, 1) supersymmetry is a gauge symmetry in

– 8 –
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string theory, and thus that the corresponding supercharges must be identified without

any non-trivial automorphism [33]. Since we want to impose a fixed N = 1 symmetry, we

restrict ourselves to identifications of the form

Qi
a = U i

̄ Q
̄
a , (2.28)

where U i
̄ is a given SU(2) matrix. This corresponds to imposing the boundary conditions

for the Grassmann variables

θa
i = Ui

̄ θa
̄ , (2.29)

where Ui
̄ is the inverse of the matrix in (2.28). We should also mention that from the

harmonic point of view different choices of the matrix Ui
̄ correspond to different parametri-

sations of the coset space (2.21), and therefore can also be interpreted as simple coordinate

transformations in our fully covariant notation.

In the presence of such a boundary condition we are then interested in the supervari-

ations for which

ǫai = Ui
̄ ǫā , (2.30)

again with the same Ui
̄. If we now perturb the theory by the bulk deformation (2.24),

then the supervariation equals, using the component language (2.26)

δSdef = 2i

∫
d2x ζaā

(
ǫai ∂+ψ

iā + ǫāı̄ ∂−ψ
ı̄a
)

= 2i

∫
dx0ζaā

(
ǫaiψ

iā − ǫāı̄ ψ
ı̄a
)

= 2i

∫
dx0 ζ[aā]ǫ

a
i ψ

iā . (2.31)

In the last step we have used that (2.29) implies that also ψia and ψı̄a satisfy a similar

relation at the boundary. Since ζ[aā] is an antisymmetric 2× 2 matrix, we can always write

it as

ζ[aā] = ǫaā

(
ǫbb̄ζbb̄

)
≡ ǫaāg . (2.32)

It is then easy to see that the above supervariation is precisely cancelled by the supervari-

aton of the boundary term

Sbdy
def =

∫
dx0 g ϕij ǫij . (2.33)

This implies that on the level of the superspace analysis, N = 4 supersymmetric branes

are never obstructed.

3 Conformal field theory analysis

In the previous section we showed, using a superspace approach on the world sheet that

N = 4 supersymmetric branes are not obstructed against bulk perturbations that preserve

the N = (4, 4) supersymmetry in the bulk. Note that this did not deal with the question

of the conformal symmetry of the theory, which is of course crucial e.g. in applications

to string theory. In this section we thus address the same problem using conformal field

theory methods. Again we begin by studying the analysis from an N = 2 point of view.
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3.1 Generalities for N = 2 theories

We are interested in (closed string) perturbations that preserve the N = (2, 2) supercon-

formal symmetry in the bulk.4 There are four different types of perturbations that have

this property, and they are usually referred to as (cc), (aa), (ac) and (ca). In all cases, the

perturbation is of the form
∫
d2z Φ̂(z, z̄) =

∫
d2z
(
G−1/2G̃−1/2Φ

)
(z, z̄) , where Φ̂ = G−1/2G̃−1/2Φ , (3.1)

and Gr, G̃r are the modes of the left- and right-moving N = 1 supercurrent, which in

terms of the supercurrents of the N = 2 algebra is simply Gr = G+
r + G−

r and similarly

for the right-movers (see appendix B.)5 Depending on which case one considers Φ in (3.1)

is a chiral (c) or anti-chiral (a) primary with respect to the left- and right-moving N = 2

algebra. So for example, in the (cc) case, we have

G+
−1/2Φ = G̃+

−1/2Φ = 0 , so that Φ̂ = G−
−1/2G̃

−
−1/2Φ . (3.2)

This is the perturbation that corresponds to the ‘chiral deformation’ of section 2.1.1. As

is well known [35], for chiral primaries the U(1) charge and the conformal dimension is

related as h = q/2, while for anti-chiral primaries we have instead h = −q/2. For the

marginal bulk perturbations we need that h = h̄ = 1
2 , and thus q = ±1 = q̄. In particular,

Φ̂ then always has vanishing U(1) charges.

We are interested in such perturbations in the presence of a boundary. As already

mentioned before, there are two natural boundary conditions for N = (2, 2) theories,

namely A-type and B-type branes. In terms of the conformal field theory description, they

are characterised by their gluing conditions, specifying how the left- and right-moving fields

are identified at the boundary. If we take the boundary to be the real axis, the two cases

are

T (z) = T̃ (z̄) , G±(z) = G̃∓(z̄) , J(z) = −J̃(z̄) , for z = z̄ (A-type) , (3.3)

T (z) = T̃ (z̄) , G±(z) = G̃±(z̄) , J(z) = J̃(z̄) , for z = z̄ (B-type) , (3.4)

where the right-moving fields are denoted by a tilde. Because of mirror symmetry the

behaviour of A-type D-branes under (cc) and (ac) deformations is the same as that of

B-type D-branes under (ac) and (cc) deformations, respectively, and similarly for (ca) and

(aa) perturbations. It is therefore sufficient to concentrate on the case of B-type boundary

conditions. Furthermore, the analysis of (aa) deformations is essentially identical to that

of a (cc) deformation, and similarly for (ca) and (ac). Thus we shall concentrate on B-type

branes under (cc) and (ac) deformations.

In either case, there are two issues to consider. First, as discussed in [6] (see also [36,

37]), a bulk perturbation may break the conformal symmetry on the boundary and induce

4In the context of an N = (4, 4) theory, these perturbations will then also preserve the N = (4, 4)

symmetry in the bulk [34].
5Unlike in section 2, ± now denotes the U(1) charge of the operators, whereas right-movers are denoted

by a tilde. Bar will be used later on for complex conjugation.
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a non-trivial RG flow. This will be the case provided that the bulk perturbation Φ̂ will

switch on a marginal boundary field as it approaches the boundary. Then the brane will

generically flow a finite distance to a different boundary condition, and we should not

expect to be able to say much about the symmetries it preserves.

On the other hand, if no such marginal or relevant operator is switched on, then the

brane will only adjust infinitesimally to an infinitesimal bulk perturbation. Then we can

ask, following [36], to which extent the gluing condition will be modified.

In the following we shall analyse these questions separately for the (cc) and (ac) per-

turbations.

3.2 N = 2 B-type branes under (cc) deformations

Let us first ask whether the bulk perturbation by the (cc) field Φ̂ will break the conformal

invariance of the boundary theory. To this end we need to consider the bulk-boundary

OPE as the field Φ̂ approaches the boundary. By the usual doubling trick [38] we can

replace the bulk field Φ̂ by two chiral fields, one in the upper half-plane, and one in the

lower half-plane. Since we are dealing with a B-type boundary condition, both of these

fields are G−
−1/2 descendants of chiral primary fields with q = 1 and h = 1

2 , and we shall

denote them by φc and φ̄c, respectively.

The possible boundary fields that are switched on are constrained by the fusion rules

of the N = 2 superconformal algebra [39, 40]. In particular, it follows from the analysis

of appendix B.2 that the fusion of two chiral primary fields with h = 1
2 and q = 1 only

contains the superconformal families

φc ⊗ φ̄c = [ϕh=1,q=2] ⊕ [G+
−1/2ϕ

+
q=1] . (3.5)

The first term is the usual chiral ring product and represents the so-called ‘even fusion

rules’; the second term describes the odd fusion that is possible in this case. Only the

U(1) charge of the fields ϕ+ is fixed to be q = 1, but the conformal dimension of ϕ+ is not

constrained; in particular there may therefore be more than one such channel. However,

for each of these fields the usual unitarity bound implies that h ≥ 1
2 . Furthermore, h = 1

2

is excluded, since ϕ+ would then be a chiral primary field for which G+
−1/2ϕ

+ = 0.

Since fusion rules describe the product structure of the corresponding superconformal

families, we can then also conclude what the leading terms in the OPE of G−
−1/2φc must

be. In fact, from (3.5) and U(1) charge conservation it follows that

(G−
−1/2φc) ⊗ (G−

−1/2φ̄c) = G−
−1/2G

−
−3/2ϕh=1,q=2 +G−

−1/2ϕ
+
q=1 + higher descendants . (3.6)

Because the conformal dimension of ϕ+ satisfies h > 1
2 , it then follows that none of the

fields on the right hand side are marginal or relevant. This then implies that no marginal

or relevant boundary field is switched on by the perturbation by Φ̂. Thus the perturbation

by the (cc) field Φ̂ does not break the conformal symmetry.

3.2.1 Modifying the gluing condition

Since the bulk perturbation does not break the conformal invariance of the boundary con-

dition, we can ask whether it will affect the superconformal gluing conditions, in particular
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those corresponding to G±. To analyse this effect, we need to apply the analysis of [36]

to the present context. To first order in the bulk perturbation, the change in the gluing

condition for G± is determined by (compare eq. (3.9) of [36] — we are using here that the

automorphism ω is trivial for B-type branes)

∆G± = λ lim
y→0

∫

H+

d2w
(
G±(z) − G̃±(z̄)

)
Φ̂(w, w̄) , (3.7)

in the limit where z approaches the boundary, i.e. y = Im z → 0. Using the doubling

trick [38] we can think of this as a chiral correlator on the full plane, where G̃±(z̄) is the

usual chiral G± field at the image point, and we write Φ̂ as a product of two chiral fields,

namely G−
−1/2φc at w, and G−

−1/2φ̄c at w̄. Then the above expression has four poles. For

the case of the field G+ each of them is of the form

G+(z)
(
G−

−1/2φc

)
(w) ≃

1

(z −w)2
V (G+

1/2G
−
−1/2φc, w) +

1

(z − w)
V (G+

−1/2G
−
−1/2φc, w)

=
2

(z −w)2
V (φc, w) +

2

(z −w)
∂wV (φc, w)

= 2
d

dw

( 1

z − w
V (φc, w)

)
. (3.8)

Here we are using the same notation as in [36], and V (φ, z) denotes the field corresponding

to the state φ at the position z. On the other hand, for G− there is no pole at all. Thus

the gluing condition for G− will not be modified. For G+, on the other hand, using the

fact that (3.8) is a total derivative, we can do the integral in (3.7) and find

∆G+ = 2λπ lim
y→0

[
φc(z)

(
G−

−1/2φ̄c

)
(z̄) −

(
G−

−1/2φc

)
(z) φ̄c(z̄)

]
. (3.9)

In general this limit is non-trivial since the fusion rules (3.6) allow for non-trivial terms.

In fact, since φc is a fermionic field, the linear combination that appears in (3.9) is just the

G−
−1/2 descendant of (3.5), and hence we have that

[
φc(z)

(
G−

−1/2φ̄c

)
(z̄)−

(
G−

−1/2φc

)
(z) φ̄c(z̄)

]
= G−

−1/2 ϕh=1,q=2 + G−
−1/2G

+
−1/2ϕ

+
q=1 + desc.

(3.10)

The limit y → 0 is then well defined, and only the first term survives, thus giving

∆G+ = 2λπ G−
−1/2 ϕh=1,q=2 . (3.11)

Hence the gluing condition for G+ is modified unless ϕh=1,q=2 vanishes, whereas that

for G− is unmodified. Because of unitarity we also need to perturb by the conjugate

(aa) field, which in turn only changes G−, but not G+. If the boundary condition just

preserves the N = 2 superconformal algebra, its boundary spectrum does not contain a

chiral field of conformal dimension h = 1 and U(1) charge q = 2. Thus the correction term

∆G+ = G−
−1/2ϕh=1,q=2 is not part of the symmetry algebra of the boundary theory, and

hence this modification cannot be absorbed into a redefinition of the gluing condition. In

this case the bulk perturbation therefore breaks the N = 2 superconformal symmetry of the

boundary condition. This means that the brane is obstructed against this (cc) deformation.
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In the N = 2 case, the condition for whether there is an obstruction is therefore

whether the bulk boundary correlator

〈Φcc(z, z̄)ϕh=1,q=2(x)〉 (3.12)

vanishes or not. In fact, this correlator is a ‘topological’ quantity, which can be calculated

in topological string theory. For the case of a 3-dimensional Calabi-Yau manifold, it is

(after spectral flow) precisely equal to the bulk boundary correlator that was calculated

in [41] using the Kapustin-Li formula [42]. As was explained in [36], this correlator vanishes

if and only if the bulk field is BRST-exact when brought to the boundary, which in turn

is the condition of [15] for the absence of an obstruction to first order. In the case of K3,

spectral flow works slightly differently, and (3.12) becomes precisely the ‘charge’ of the

bulk field. This controls the obstruction theory for K3, as was explained in [43].

3.2.2 Restoring the N = 1 superconformal symmetry

The above analysis shows that the N = 2 superconformal symmetry is broken by a (cc)

perturbation if (3.12) does not vanish. If this is the case, also the N = 1 superconformal

symmetry is broken. From a string theory point of view this is not acceptable since the

N = 1 superconformal symmetry is a gauge symmetry. In order to explain how we can

restore this symmetry we need to consider a real perturbation, i.e. we need to add to the

(cc) perturbation its hermitian conjugate, which is then an (aa) perturbation. The above

considerations imply that the gluing map for G = G+ +G− changes by

∆G = 2λπ
[
G−

−1/2ϕh=1,q=2 +G+
−1/2ϕh=1,q=−2

]
, (3.13)

where ϕh=1,q=−2 is the field that appears in the even fusion rule of φa with φ̄a. To restore

the original gluing condition, we now turn on the boundary perturbation

∆Sbd = iλ

∫
dx
[
ϕh=1,q=2 + ϕh=1,q=−2

]
. (3.14)

The effect of boundary perturbations on the gluing map were analysed in [44]. The relevant

term comes from the first order pole as the chiral field G approaches the boundary field

in (3.14). Since ϕh=1,q=2 is a chiral primary field, while ϕh=1,q=−2 is anti-chiral, we have

G(z) [ϕh=1,q=2 + ϕh=1,q=−2] =
1

z − x

[
G−

−1/2ϕh=1,q=2+G
+
−1/2ϕh=1,q=−2

]
+ regular , (3.15)

which therefore cancels precisely (3.13). This ties in precisely with what we found in the

field theory approach where the boundary term (2.13) restored the N = 1 supersymmetry.

To leading order this perturbation respects the conformal symmetry (since the bound-

ary field is marginal). However, generically, the boundary field in (3.14) is not exactly

marginal, and thus this perturbation will induce an RG flow to higher order. This should

correspond to the RG flow of [41].
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3.3 N = 2 B-type branes under (ac) deformations

It is expected [16] that the stability of B-type branes depends on the (ac) moduli. This

has been made more precise in [18, 19, 45] where it was shown that (ac) perturbations can

change the boundary condition for the spectral flow operator and hence possibly destroy

the charge quantisation condition in the open string sector. As a consequence, an (ac) bulk

perturbation may lead to the appearance of open string tachyons, triggering a decay of the

brane at lines of marginal stability. Note that the perturbation by (ac) fields is rather differ-

ent in nature than that by (cc) fields: the former influence the integer charge quantisation

and lead to a potential breaking of conformal invariance, while world-sheet supersymmetry

is always preserved. The latter can potentially break world-sheet supersymmetry, leading

to obstructions, but leave the integer charge quantisation intact.

In the following we want to explain how these effects appear from our point of view.

As before, the first step consists of analysing whether the bulk perturbation by Φ̂ induces

a marginal (or relevant) boundary field as it approaches the boundary. (If this happens,

then the bulk perturbation will break the conformal invariance and hence induce an RG

flow.) This question is now controlled by the fusion of a chiral primary field φc, with an

anti-chiral primary field φ̄a. Using the fusion rules of the N = 2 algebra [39, 40], one can

show that only the even fusion rule can contribute,

φc ⊗ φ̄a = [ϕq=0] , (3.16)

but one cannot deduce any constraints about the conformal dimension of ϕ in general.6

We therefore cannot exclude that such a flow is induced by the bulk perturbation. In fact,

this flow is the world-sheet description of what happens on a line of marginal stability,

and the line of marginal stability is the location in moduli space where the boundary field

that is switched on by the bulk perturbation becomes marginal. As one crosses the line

of marginal stability, the brane undergoes a non-trivial RG flow, and thus decays. At the

end-point of the RG flow the would-be marginal boundary field is no longer marginal, and

the new configuration is stable against further (ac) deformations.

Let us thus assume that we consider a configuration in the interior of the moduli

space, away from any line of marginal stability. This means that (apart from the vacuum

whose contribution we can regularise) the fusion rules (3.16) do not contain any relevant

or marginal fields. It is then clear that (again up to possible vacuum contributions) the

field Φ̂ vanishes in the limit as it approaches the boundary.

We can then study the behaviour of the gluing conditions under the perturbation. The

analysis is very similar to what was done before; in particular we now find that the potential

contribution would have to come from G−
−1/2ϕq=0 (for ∆G+) and G+

−1/2ϕq=0 (for ∆G−).

However, by our assumption above, neither of these fields survives in the y → 0 limit. Thus

we conclude that none of the gluing conditions are modified, so that no obstruction occurs.

This explains, from a world-sheet point of view, why (ac) perturbations of B-type branes

do not break supersymmetry, in agreement with the above expectations.

6We shall see in the examples below that non-trivial relevant fields do indeed appear.
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3.4 The N = 4 analysis

After this N = 2 discussion we now want to understand to which extent these statements

are modified for N = 4 superconformal branes. Before we discuss the details, there is

one general point we should stress. Suppose we are given some boundary condition that

preserves the N = 4 superconformal algebra up to some automorphism. We may absorb

this automorphism into a redefinition of the left- or right-moving N = 4 generators, and

hence assume that the boundary condition preserves the N = 4 algebra without any

automorphism. With respect to the usual N = 2 subalgebra, the resulting D-brane is then

a B-type D-brane.

We are interested in studying the behaviour of this D-brane under bulk deformations

(that preserve the N = (4, 4) superconformal symmetry in the bulk). As we have mentioned

before, such bulk deformations are of four different types: (cc), (ac), (ca) or (aa). In an

N = (2, 2) theory these four fields lie in different N = (2, 2) multiplets; however in the

N = (4, 4) case they always combine into one common N = (4, 4) multiplet.

One may now be tempted to believe that the N = (4, 4) symmetry would guarantee

that the above brane behaves the same way under a (cc) perturbation, as under an (ac)

perturbation, say. However, this is not true. Once we consider a brane that preserves the

N = 2 subalgebra without any automorphism (and hence is a B-type brane with respect to

the N = 2 subalgebra) then the N = 4 automorphisms that preserve this property are the

‘outer automorphisms’ of the N = 4 algebra that rotate the G± and G
′± modes into one

another. However, these automorphisms do not map a (cc) field to an (ac) field (since they

do not modify the separate U(1)-charges). Put differently, the N = (4, 4) automorphism

that relates a (cc) perturbation to an (ac) perturbation also maps a B-type brane (with

respect to the N = 2 subalgebra) to an A-type brane (with respect to the same N = 2

algebra). Thus, even in the situation with N = (4, 4) supersymmetry, there are two cases

to consider. We shall now discuss them in turn.

3.4.1 (cc) perturbation of B-type branes

To start with we just employ the N = (2, 2) superconformal symmetry. Thus we can repeat

the analysis of section 3.2. In particular, it therefore follows that the (cc) perturbation

will not break the conformal symmetry. On the other hand, as we saw in section 3.2.1,

generically the N = 2 superconformal symmetry may be broken. In fact, the term that

modifies the gluing condition for the G+ generator is precisely given by (3.11). Note

that this term only breaks the symmetry if the right-hand-side of (3.11) is not part of

the symmetry algebra of the theory, i.e. if ϕh=1,q=2 is not part of the symmetry algebra.

Otherwise, (3.11) only means that the gluing condition for G+ is suitably modified.

If we are just considering an N = 2 superconformal field theory, then the chiral algebra

does not contain a field of h = 1 and q = 2, and hence the symmetry is broken (provided

that ϕh=1,q=2 6= 0). In fact, if the N = 2 superconformal field theory contains such a chiral

field (as well as its hermitian conjugate), then the symmetry is enlarged, and one finds that

the resulting chiral algebra must contain an algebra with N = 4 superconformal symmetry

(where the additional supercharges are obtained fromG∓ by the action of ϕh=1,q=±2
∼= J±).
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Conversely, if the boundary theory preserves the N = 4 superconformal symmetry for

c = 6, then the representation theory of the N = 4 algebra at c = 6 (k = 1) implies that

ϕh=1,q=2
∼= J+ [46]. Thus in this case, the gluing condition (3.11) is modified by a field in

the chiral algebra itself.7 Then the symmetry is not broken but only the gluing condition

is modified. Since the same argument also holds for G′+ (and similarly for G− and G′−), it

then follows that the full N = 4 superconformal symmetry is preserved in this case. This

shows that N = 4 B-type branes are never obstructed against (cc) perturbations. This is

in nice agreement with what we found in the superspace analysis of section 2.

Although the N = 4 superconformal symmetry is preserved, the gluing condition for

the N = 1 subalgebra is generically broken. This can be adjusted as in section 3.2.2. In

the N = 4 case, the boundary field in (3.14) is exactly marginal, and hence no higher order

RG flow is induced.

3.4.2 (ac) perturbations of B-type branes

The situation where we perturb an N = 4 B-type brane by an (ac) perturbation is more

subtle. From the point of view of the N = 2 analysis, we saw that the bulk perturbation

may switch on a marginal field on the boundary. The geometric interpretation of this

phenomenon was that this happens on a line of marginal stability. One may be tempted

to believe that the N = 4 representation theory should imply that such a phenomenon

cannot happen. However, this does not seem to be the case (see appendix B.2). In fact,

there is an explicit example (see section 4.2) where a non-trivial boundary field on an

N = 4 preserving D-brane is switched on by an (ac) bulk deformation. At least in that

example, this boundary field will induce an RG flow on the boundary (and thus modify the

D-brane significantly) but it does not seem to lead to a ‘brane decay’ and therefore should

probably not be interpreted as indicating a ‘line of marginal stability’. However, from the

point of view of conformal perturbation theory, the fact that no ‘brane decay’ takes place

cannot be seen at leading order in perturbation theory, and it is therefore difficult — even

in the situation with N = 4 — to make definite general predictions about the absence or

otherwise of possible brane decays for N = 4 branes.

Finally, if we sit at a generic point in the (ac) moduli space, i.e. not on a line of

marginal stability, then the same conclusion as in section 3.3 applies, and we conclude that

there is no obstruction.

4 Some examples

In this section we want to present two simple examples that illustrate some of the claims

we have been making above. In particular, we want to exemplify the mechanisms behind

the obstruction of B-type N = 2 branes under (cc) deformations in a simple torus example

(section 4.1). In section 4.2 we shall then discuss N = 4 branes on K3 at the Gepner point

and show that under (ac) perturbations non-trivial boundary fields may be switched on.

7For ϕh=1,q=2 = J+, the field G−
−1/2J

+ is another supercurrent (namely G−
−1/2J

+ = −G′+), as follows

from the N = 4 commutation relations (B.1).
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4.1 A simple torus example

To illustrate some aspects of our N = 2 analysis, let us consider the free theory on T 4 =

T 2 × T 2, where initially both tori are taken to be square tori of the same size. On each

torus there is a complex boson and a complex fermion whose (left-moving) modes we

denote by α
(i)
n , ᾱ

(i)
n and ψ

(i)
m , ψ̄

(i)
m , where i = 1, 2 labels the two tori. The corresponding

right-moving modes will be denoted by a tilde. All of these modes satisfy the usual (anti)-

commutation relations. The theory has actually N = 4 supersymmetry — see e.g. [43] for

the construction of the corresponding superconformal algebra. Although this means that

there will be no actual obstructions, all the effects described above occur.

We are interested in the gluing condition determined by

α̃(1) = ωλ(α(1)) , ˜̄α(1) = ωλ(ᾱ(1))

α̃(2) = ωλ(α(2)) , ˜̄α(2) = ωλ(ᾱ(2)) ,
(4.1)

where ωλ is defined as

ωλ(α(1)) = cos 2θλᾱ
(1) + sin 2θλα

(2) ωλ(ᾱ(1)) = cos 2θλα
(1) + sin 2θλᾱ

(2)

ωλ(α(2)) = cos 2θλᾱ
(2) − sin 2θλα

(1) ωλ(ᾱ(2)) = cos 2θλα
(2) − sin 2θλᾱ

(1) .
(4.2)

We also impose similar gluing conditions for the fermions. For the initial square tori

θλ = π
4 is an allowed boundary condition, and one easily shows that it satisfies B-type

gluing conditions for the usual (diagonal) N = 2 algebra (see e.g. [43]).

Let us now perturb the theory by the (cc) and (aa) fields

φcc = ψ̄
(1)
−1/2

˜̄ψ
(1)
−1/2|0〉 , φaa = ψ

(1)
−1/2ψ̃

(1)
−1/2|0〉 , (4.3)

so that the full perturbation fields are

Φcc = G−
−1/2G̃

−
−1/2φc,c = −2ᾱ

(1)
−1

˜̄α
(1)
−1|0〉 ,

Φaa = G+
−1/2Ḡ

+
−1/2φa,a = −2α

(1)
−1α̃

(1)
−1|0〉 .

(4.4)

The corresponding hermitian fields are then described by the two linear combinations

δS1 =

∫
d2z (Φcc + Φaa) , and δS2 = i

∫
d2z (Φcc − Φaa) . (4.5)

Physically, in terms of the moduli of the torus, δS1 corresponds to switching on the combi-

nation (g11 − g22) of the diagonal elements of the first torus metric, while δS2 corresponds

to modifying g12 of the first torus.8

Given the explicit form of the perturbing fields (4.4) as well as the boundary condi-

tions (4.2), it is easy to see that Φcc only switches on a boundary field with h = 2 as

it approaches the boundary, and likewise for Φaa. Thus the perturbation does not break

8The remaining moduli of the first torus (the volume form and the anti-symmetric B-field) correspond

to deformations involving the (ca) and (ac) fields. In addition there are also similar moduli corresponding

to changing the second torus.
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the conformal invariance, in agreement with the analysis of section 3.2. The effect on the

gluing map is very similar to what has been analysed in [36]. To first order it equals

δωλ(α(1)) = 2 cos 2θλα
(2) , (4.6)

and actually this can be integrated up for arbitrary finite λ. This leads to the differential

equation
d

dλ
ωλ(α(1)) = π sin2 2θλᾱ

(1) − π cos 2θλ sin 2θλα
(2) , (4.7)

which is solved by ωλ(α(1)) if θλ satisfies

θ̇λ = −
π

2
sin 2θλ . (4.8)

Similar differential equations can be obtained for the other bosonic modes as well, and all

of them just correspond to modifying ωλ as in (4.8).

It is also straightforward to see that the gluing condition for the fermions is not affected

by the perturbation. Since the N = 2 supercharges are bilinear combinations of bosons

and fermions, it is then straightforward to determine their gluing conditions. One finds

that for λ 6= 0 they do not close any longer on the N = 2 subalgebra, but rather involve

also the other supercharges of the N = 4 algebra [43]. Among other things this then also

implies that the N = 1 gluing conditions are modified. To restore them we proceed as

in section 3.2.2. and switch on the boundary perturbation (3.14), which in the current

context takes the form

iλ

∫

R

dx (φc,c(x) − φa,a(x)) = iλ

∫

R

dx
(
ψ(1)ωλ(ψ(1)) + ψ̄(1)ωλ(ψ̄(1))

)
. (4.9)

This field induces a change in the gluing condition for the fermions (while it does not affect

the bosons); following [44], it leads to

δωλ(ψ) = −2πδλ
[(
ψ(1)ωλ(ψ(1)) + ψ̄(1)ωλ(ψ̄(1))

)

0
, ωλ(ψ)

]
. (4.10)

In particular, this therefore guarantees that the fermions continue to satisfy the same

gluing condition as the bosons, i.e. the one determined in terms of ωλ. It is then in

particular manifest that the original N = 1 is preserved. While this restores the N = 1

gluing conditions, it does not do so for the N = 2 B-type gluing conditions. However, the

resulting boundary conditions still preserves the N = 4 symmetry [43], in agreement with

the analysis of section 3.4.1.

4.2 K3 at the Fermat point

Another interesting example is the non-linear sigma model on K3, whose infrared theory

defines an N = (4, 4) superconformal theory. More precisely, we will concentrate on the

Fermat point given by the zero locus of W = x4
1 + x4

2 + x4
3 + x4

4, where there are (at least)

two alternative formulations: as a Gepner model [47, 48], associated to four copies of the

k = 2 N = 2 minimal model, or as the torus orbifold T 4/Z4. In the Gepner construction
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only the N = (2, 2) superconformal symmetry is manifest; the additional SU(2) currents

that enhance it to N = (4, 4) are explicitly given as

J+ =

r⊗

i=1

(0, 2, 2) ⊗ (0, 0, 0) =

r⊗

i=1

(ki,−ki, 0) ⊗ (0, 0, 0) , (4.11)

J− =
r⊗

i=1

(0,−2, 2) ⊗ (0, 0, 0) =
r⊗

i=1

(ki, ki, 0) ⊗ (0, 0, 0) , (4.12)

and similarly for the right-movers. Here, as in the following, we shall use the conventions

of [43].

We shall consider the B-type D-brane that is formulated as a permutation brane [49]

associated to the (12)(34) permutation. In the orbifold description, this brane corresponds

to a superposition of two D2-branes, one with Neumann directions along x1 and x3, and the

other with Neumann directions along x2 and x4. This configuration is then invariant under

the Z4 rotation action. (For details about these branes and their identification see [43].)

Since this boundary condition actually preserves the N = 4 superconformal symmetry, we

should be able to test our predictions of section 3.4.

First of all, we have checked that the h = 1, q = 2 field that is potentially switched on

by the (cc) perturbations is always the J+ current on the boundary, i.e. the restriction of

the bulk J+ current (4.11) to the boundary. This shows that this brane is not obstructed

against any of the (cc) perturbations.

Incidentally, a similar analysis for an N = 2 brane in a c = 9 Calabi-Yau Gepner model

typically leads to a boundary field that is not exactly marginal. For example, consider the

(12)(35)(4) brane in the (k = 3)⊗5 model, and perturb by the (cc) field

φ =
(
(3,−3, 0) ⊗ (3,−3, 0)

)
⊗
(
(0, 0, 0) ⊗ (0, 0, 0)

)
⊗
(
(2,−2, 0) ⊗ (2,−2, 0)

)

⊗
(
(0, 0, 0) ⊗ (0, 0, 0)

)
⊗
(
(0, 0, 0) ⊗ (0, 0, 0)

)
. (4.13)

On the permutation brane this bulk field induces the boundary field

Ψ = (3,−3, 0) ⊗ (3,−3, 0) ⊗ (2,−2, 0) ⊗ (0, 0, 0) ⊗ (2,−2, 0) , (4.14)

which of course has h = 1 and q = 2. The OPE of Ψ with itself then contains

ΨΨ ∼ (3,−1, 2) ⊗ (3,−1, 2) ⊗ (3, 1, 2) ⊗ (0, 0, 0) ⊗ (3, 1, 2) , (4.15)

which has h = 14
5 , thus showing that Ψ does not belong to the chiral algebra, i.e. that it

is not exactly marginal. We would therefore expect that a non-trivial boundary flow is

induced, and this is indeed what was found in [41].

Let us now return to the case of the (12)(34) permutation brane on the (k = 2)⊗4

model of K3, and analyse the behaviour under an (ac) perturbations. As an example of

such a perturbation we consider the bulk field

φ =
(
(0, 0, 0)⊗(0, 2, 2)

)
⊗
(
(1, 1, 0)⊗(1, 3, 2)

)
⊗
(
(1, 1, 0)⊗(1, 3, 2)

)
⊗
(
(2, 2, 0)⊗(2, 4, 2)

)

(4.16)
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from the first twisted sector of the Gepner orbifold. (From the point of view of the torus

orbifold, this field arises in the first twisted sector of the Z4 orbifold.) Again, using the

permutation gluing condition, it is easy to see that φ induces the boundary field

Ψ = (1,−1, 0) ⊗ (1,−1, 0) ⊗ (1, 1, 0) ⊗ (1, 1, 0) (4.17)

on the boundary. This field has q = 0 and h = 1/2, and thus is an example of a non-trivial

(relevant) field appearing in the fusion rule (B.16). From the orbifold point of view, this

field has also a simple interpretation: it is precisely the lowest mode of the open string

between the two D2-branes. (Note that from the point of view of the orbifold theory

this is not a boundary changing field since only the superpositions of D2-branes is orbifold

invariant. In fact, since the bulk field comes from the first twisted sector, it transforms with

a primitive fourth root of unity under the orbifold quantum symmetry. The corresponding

boundary field must then transform with the complex conjugate phase under this quantum

symmetry since otherwise the bulk-boundary correlator would vanish. But this means that

it must be a boundary changing field since these get projected out when one performs the

quantum symmetry orbifold to return to the original theory.)

Geometrically, this boundary field will probably modify the way the two D2-branes

meet at the orbifold singularity — the bulk field in question describes after all one of the

blowing-up modes of the orbifold fixed point. However, we do not think this will lead to

any form of ‘brane decay’ since there are probably no configurations of two D-branes that

have the same RR charge and tension. Thus we should probably not interpret this as an

example of a line of marginal stability. However, from the perturbed conformal field theory

point of view, this phenomenon looks identical to what happens, say, in the N = 2 context

where there are lines of marginal stability.

5 Conclusions

In this paper we have studied how the obstructions of supersymmetric branes may be under-

stood from a world-sheet perspective. In particular, we have explained how the (possible)

obstruction of an N = 2 B-type brane under a (cc) perturbation arises in the superspace

field theory language, and from the point of view of perturbed conformal field theory. We

have also explained that this phenomenon does not occur for N = 4 superconformal branes

at c = 6, in particular for half-supersymmetric D-branes on K3.

While our analysis for the perturbations of B-type branes under (cc) deformations is

fairly complete, the behaviour of B-type branes under (ac) deformations (or A-type branes

under (cc) deformations) is more subtle. In the N = 2 context it is believed that there

are no actual obstructions, but that branes may decay along lines of marginal stability.

This phenomenon is not visible in the superspace field theory language. However, we can

understand the origin of it in the conformal field theory analysis where it corresponds to the

situation when an irrelevant boundary field (that is switched on by the bulk deformation)

becomes marginal (see section 3.3). In the case of half-BPS branes in N = 4 theories, there

is evidence that lines of marginal stability do not exist. This expectation is mainly based

on the fact that the index that counts half-BPS states is constant on the full moduli space.
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However, the analysis of section 4.2 seems to suggest that at least relevant boundary fields

may be switched on by bulk deformations, even in the N = 4 case. Thus on the basis of

our leading order conformal field theory analysis it does not appear to be possible to detect

any difference between the N = 2 and N = 4 case in this respect. It would be interesting

to understand whether the higher order behaviour is different between the N = 2 and the

N = 4 case. It would also be very interesting to relate this world-sheet analysis with recent

progress for ‘wall-crossing formulae’ of N = 2 branes, see for example [50].
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A Superspace conventions

A.1 N = 2 superspace conventions

The N = 2 supersymmetry transformations are generated by the following supercharges

Q± =
∂

∂θ±
+ iθ̄±∂± , Q̄± = −

∂

∂θ̄±
− iθ±∂± .

Here ∂± = 1
2(∂0 ± ∂1) and x± = x0 ± x1 are the usual light-cone coordinates. One easily

checks that the only non-trivial anti-commutators of these generators are

{Q±, Q̄±} = −2i∂± . (A.1)

For the following it is also useful to introduce the corresponding spinor derivatives

D± =
∂

∂θ±
− iθ̄±∂± , D̄± = −

∂

∂θ̄±
+ iθ±∂± .

One easily confirms that all of these generators anti-commute with all the Q± and Q̄±.

Furthermore, the only non-trivial anti-commutator involving the D generators is

{D±, D̄±} = +2i∂± . (A.2)

With the help of these operators we can now define what we mean by a chiral superfield

Φ: this is a superfield that satisfies

D̄±Φ = 0 . (A.3)

Every chiral superfield can be written as

Φ(x±, θ±, θ̄±) = φ(y±) + θ+ψ+(y±) + θ−ψ−(y±) + θ+θ−F (y±) , (A.4)
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where

y± = x± − iθ±θ̄± . (A.5)

Indeed, one easily checks that Φ in (A.4) satisfies (A.3). The complex conjugate of a

chiral superfield Φ is an anti-chiral superfield Φ̄; anti-chiral superfields are characterised

by D±Φ̄ = 0, and they have an expansion

Φ̄(x±, θ±, θ̄±) = φ̄(ȳ±) + θ̄+ψ̄+(ȳ±) + θ̄−ψ̄−(ȳ±) + θ̄+θ̄−F̄ (ȳ±) , (A.6)

where

ȳ± = x± + iθ±θ̄± . (A.7)

A twisted chiral superfield U is a superfield that satisfies

D̄+U = D−U = 0 . (A.8)

Every twisted chiral superfield can be written as

U(x±, θ±, θ̄±) = v(ỹ±) + θ+χ+(ỹ±) + θ̄−χ̄−(ỹ±) + θ+θ̄−E(ỹ±) , (A.9)

where

ỹ± = x± ∓ iθ±θ̄± . (A.10)

Finally, a general twisted anti-chiral superfield that is characterised by

D+Ū = D̄−Ū = 0 (A.11)

can always be written as

Ū(x±, θ±, θ̄±) = v̄(ŷ±) + θ̄+χ̄+(ŷ±) + θ−χ−(ŷ±) + θ̄+θ−Ē(ŷ±) , (A.12)

where

ŷ± = x± ± iθ±θ̄± . (A.13)

A.2 N = 4 superspace conventions

In what follows it will be understood that shifting of SU(2) indices is accomplished with

the help of ǫ-symbols. In the N = 4 standard superspace (2.19), supersymmetry transfor-

mations will be generated by

Qi =
∂

∂θi
+ iθ̄i∂+ , and Q̄i = −

∂

∂θ̄i
− iθi∂+ , (A.14)

Qı̄ =
∂

∂θı̄
+ iθ̄ ı̄∂− , and Q̄ı̄ = −

∂

∂θ̄ı̄
− iθı̄∂− , (A.15)

with the following non-trivial anti-commutation relations

{Qi, Q̄j} = −2iδi
j∂+ , {Qı̄, Q̄̄} = −2iδı̄

̄∂− . (A.16)
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Similarly, we can also introduce the corresponding spinor derivatives which take the form

Di =
∂

∂θi
− iθ̄i∂+ , and D̄i = −

∂

∂θ̄i
+ iθi∂+ , (A.17)

Dı̄ =
∂

∂θı̄
− iθ̄ı̄∂− , and D̄ı̄ = −

∂

∂θ̄ı̄
+ iθı̄∂− . (A.18)

The only non-vanishing anti-commutation relations involving Ds are given by

{Di, D̄j} = 2iδi
j∂+ , {Dı̄, D̄̄} = 2iδı̄

̄ ∂− . (A.19)

In order to avoid cluttering our formulae we combine all spinors into doublets with respect

to SU(2)c. First of all, we write the Grassmann variables as9

θa
i =

(
θi

θ̄i

)
, and θā

ı̄ =

(
θı̄

θ̄ı̄

)
, (A.20)

as well as the supercharges

Qi
a =

(
Qi

Q̄i

)
, Qı̄

ā =

(
Qı̄

Q̄ı̄

)
, (A.21)

and finally also the spinor derivatives

Di
a =

(
Di

D̄i

)

, Dı̄
ā =

(
Dı̄

D̄ı̄

)

. (A.22)

An example of a superfield living on the superspace (2.19) is the N = (4, 4) twisted

multiplet (see [20, 24, 25]) whose Grassmann expansion reads

Φīı =ϕīı + 2θa,iψı̄
a + 2θā,̄ıψi

ā + 2θa,iθā,̄ıFaā + derivatives . (A.23)

The lowest component of this field is given by a quartet of (pseudo-real) scalar fields, which

satisfy the relation

(ϕīı) = ǫijǫı̄ ̄ ϕ
j̄ . (A.24)

A.3 Harmonic superspace conventions

A.3.1 Supercharges and spinor derivatives

In (2.21) we have introduced harmonic coordinates

{u
(±,0)
i } ∈

SU(2)L
U(1)L

, and {u
(0,±)
ı̄ } ∈

SU(2)R
U(1)R

, (A.25)

where SU(2)L and SU(2)R will be identified with the left- and right-moving SU(2)f , re-

spectively. Explicitly we can write the harmonic variables in the following matrix form
(
u

(−,0)
1 u

(+,0)
1

u
(−,0)
2 u

(+,0)
2

)
∈ SU(2)L , and

(
u

(0,−)
1 u

(0,+)
1

u
(0,−)
2 u

(0,+)
2

)
∈ SU(2)R . (A.26)

9Notice that they transform as (2,2) under SU(2)c × SU(2)f .
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Acting with SU(2)L on the left, we see that both u
(+,0)
i and u

(−,0)
i are doublets. The ±

indicates the U(1)L charge, as can be seen by acting with U(1)L ⊂ SU(2)L on the right.

Similar statements obviously hold for the right moving expressions. We define raising and

lowering of indices via complex conjugation,

u(+,0),i = u
(−,0)
i

u
(+,0)
i = −u(−,0),i

and
u(0,+),̄ı = u

(0,−)
ı̄

u
(0,+)
ı̄ = −u(0,−),̄ı .

(A.27)

It then follows that

u(+,0),iu
(−,0)
i = 1 and u(0,+),̄iu

(0,−)

ī
= 1 , (unit determinant condition) , (A.28)

and, using the convention ǫ12 = −1,

ǫij = u
(+,0)
i u

(−,0)
j − u

(−,0)
i u

(+,0)
j , and ǫı̄ ̄ = u

(0,+)
ı̄ u

(0,−)
̄ − u

(0,−)
ı̄ u

(0,+)
̄ . (A.29)

These relations entail that not all of the harmonic variables are independent of each other.

This has in particular the effect that näıve partial derivatives with respect to u are not

allowed. Instead one has to use covariant harmonic derivatives, which take the following

form (see for example [24, 30])

D(±2,0) = u
(±,0)
i

∂

∂u
(∓,0)
i

, D(0,±2) = u
(0,±)
i

∂

∂u
(0,∓)
i

, (A.30)

D
(0,0)
(L) = u

(±,0)
i

∂

∂u
(±,0)
i

, D
(0,0)
(R) = u

(0,±)
i

∂

∂u
(0,±)
i

. (A.31)

One can easily convince oneself that these derivatives respect the relation (A.28).

The integration over the harmonic variables is simply an integration on the sphere which

picks the singlet piece of the harmonic expansion of the integrand. In particular we have

∫
du(±,0)1 =

∫
du(0,±)1 = 1 , (A.32)

while we get on the other hand (for m 6= 0 6= n)

∫
du(±,0)u

(+,0)
(i1

. . . u
(+,0)
in

u
(−,0)
j1

. . . u
(−,0)
jm) = 0 , (A.33)

∫
du(0,±)u

(0,+)
(̄ı1

. . . u
(0,+)
ı̄n u

(0,−)
̄1 . . . u

(0,−)
̄m) = 0 . (A.34)

The supersymmetries in the formulation of (2.20) are generated by the supercharges of

standard N = 4 superspace (i.e. (A.15)) projected by the harmonic coordinates

Q(±,0)
a = u

(±,0)
i Qi

a = ∓
∂

∂θa(∓,0)
+ iθ̄(±,0)

a ∂+ ,

Q
(0,±)
ā = u

(0,±)
ı̄ Qı̄

ā = ∓
∂

∂θā(0,∓)
+ iθ̄

(0,±)
ā ∂− . (A.35)
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Using (A.16), the projected commutation relations become

{Q(±,0)
a ,Q

(∓,0)
b } = ∓ 2i ǫab ∂+ , {Q

(0,±)
ā ,Q

(0,∓)

b̄
} = ∓ 2i ǫāb̄ ∂− . (A.36)

By projecting (A.18) we can in the same manner also define the projected spinor derivatives

D(±,0)
a = u

(±,0)
i Di

a = ∓
∂

∂θa(∓,0)
− iθ̄(±,0)

a ∂+ ,

D
(0,±)
ā = u

(0,±)
ı̄ Dı̄

ā = ∓
∂

∂θā(0,∓)
− iθ̄

(0,±)
ā ∂− , (A.37)

which (in view of (A.19)) satisfy

{D(±,0)
a ,D

(∓,0)
b } = ± 2i ǫab ∂+ , {D

(0,±)
ā ,D

(0,∓)

b̄
} = ± 2i ǫāb̄ ∂− . (A.38)

For further convenience let us also introduce the so called analytic basis, in which we

redefine the space-time coordinates in the following manner

z+ = x+ − iθa(+,0)θ̄(−,0)
a , and z− = x− − iθā(0,+)θ̄

(0,−)
ā . (A.39)

In this basis, the supercharges become

Q(+,0)
a = −

∂

∂θa(−,0)
+ 2iθ̄(+,0)

a ∂+ , Q(−,0)
a =

∂

∂θa(+,0)
,

Q
(0,+)
ā = −

∂

∂θā(0,−)
+ 2iθ̄

(0,+)
ā ∂− , Q

(0,−)
ā =

∂

∂θā(0,+)
, (A.40)

while the spinor derivatives read

D(+,0)
a = −

∂

∂θa(−,0)
, D(−,0)

a =
∂

∂θa(+,0)
− 2iθ̄(−,0)

a ∂+ ,

D
(0,+)
ā = −

∂

∂θā(0,−)
, D

(0,−)
ā =

∂

∂θā(0,+)
− 2iθ̄

(0,−)
ā ∂− . (A.41)

Notice in particular that the operators (D
(+,0)
a ,D

(0,+)
ā ) are simple partial derivatives with

respect to the Grassmann variables.

A.3.2 Superfields

The superfields we are going to consider on (2.20) are of the following type10 [24]

Φ(+,+) =ϕ(+,+) + 2θa(+,0)ψ(0,+)
a + 2θā(0,+)ψ

(+,0)
ā − iθa(+,0)θ(+,0)

a ∂+ϕ
(−,+)

− iθā(0,+)θ
(0,+)
ā ∂−ϕ

(+,−) + θa(+,0)θā(0,+)Faā − 2iθa(+,0)θā(0,+)θ
(0,+)
ā ∂−ψ

(0,−)
a

− 2iθā(0,+)θa(+,0)θ(+,0)
a ∂+ψ

(−,0)
ā − θa(+,0)θ(+,0)

a θā(0,+)θ
(0,+)
ā ∂+∂−ϕ

(−,−) . (A.42)

Here we are using harmonically projected component fields, for example for the scalars

ϕ(±,±) = ϕīıu
(±,0)
i u

(0,±)
ı̄ , (A.43)

10We are working in the analytic basis (A.39) and it is understood that all component fields are functions

of z± as well as the harmonic coordinates.
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while the notation for the fermions shall be

ψ
(±,0)
ā = ψi

āu
(±,0)
i , and ψ(0,±)

a = ψı̄
au

(0,±)
ı̄ . (A.44)

Notice in particular that the superfield (A.42) has charges (+1,+1) with respect to

U(1)L × U(1)R. Moreover, observe that the superfield Φ(+,+) has an ultrashort compo-

nent expansion, which is due to our formulation of the theory on harmonic superspace. To

be more precise, Φ(+,+) is G(rassmann)-analytic in the sense that it only depends on half

of all the Grassmann variables. Formulated as a constraint on Φ(+,+) this statement means

D(+,0)
a Φ(+,+) = D

(0,+)
ā Φ(+,+) = 0 , (A.45)

which becomes apparent upon recalling (A.41). In a sense one can understand equa-

tion (A.45) as the generalised N = 4 version of the chirality conditions of N = 2 supersym-

metry (i.e. equations (A.3), (A.8) and (A.11)). Besides that Φ(+,+) is also H(armonically)-

analytic, which means that the harmonic dependence of its components is not arbitrary

but satisfies

D(+2,0)Φ(+,+) = D(0,+2)Φ(+,+) = 0 . (A.46)

B The N = 2 and N = 4 superconformal theories

B.1 The N = 2 and N = 4 superconformal algebras

The N = 2 superconformal algebra is generated by the modes Ln of the stress-energy

tensor, the modes Jn of a U(1)-current, as well as by the modes of the two supercurrents

G±
r . The commutation relations are

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n ,

[Lm, Jn] = −nJm+n ,

[
Lm, G

±
n

]
=

(
1

2
m− n

)
G±

m+n ,

[Jm, Jn] =
c

3
mδm,−n ,

[
Jm, G

±
n

]
= ±G±

m+n ,

{
G+

m, G
−
n

}
= 2Lm+n + (m− n)Jm+n +

c

3

(
m2 −

1

4

)
δm,−n ,

{
G+

m, G
+
n

}
=
{
G−

m, G
−
n

}
= 0 .

Here the superscript ± denotes the U(1) charge of the generator. In the N = 4 su-

perconformal algebra the U(1) symmetry is enhanced to an affine SU(2) symmetry; the

corresponding modes are denoted by J±
n and Jn, and satisfy the commutation relations

[Jm, J
±
n ] = ± 2J±

m+n

[J+
m, J

−
n ] = Jm+n +

c

6
mδm,−n

[Jm, Jn] =
c

3
mδm,−n .
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In addition there are two more supercurrents, whose modes we denote by G′±
r . The addi-

tional commutation relations are [51]

{G±
m, G

′±
n } = ∓2(m− n)J±

m+n {G±
m, G

′∓
n } = 0

[Lm, G
′±
n ] =

(m
2

− n
)
G′±

m+n [Jm, G
′±
n ] = ±G′±

m+n

[J±
m, G

±
n ] = [J±

m, G
′±
n ] = 0

[J±
m, G

∓
n ] = ±G′±

m+n [J±
m, G

′∓
n ] = ∓G±

m+n

{G′+
m, G

′−
n } = 2Lm+n + (m− n)Jm+n +

c

3

(
m2 −

1

4

)
δm,−n . (B.1)

The relation of these operators to the supercharges of the superspace approach of ap-

pendix A.2 is

Qi =

(
G′+

−1/2

G+
−1/2

)
, and Q̄i =

(
G−

−1/2

−G′−
−1/2

)
. (B.2)

It is then straightforward to reproduce the action of SU(2)c as well as the relation (A.16)

{Qi, Q̄j} = 2δi
jL−1, (B.3)

upon the identification of L−1 = −i∂+ with the generator of infinitesimal bosonic transla-

tions.

B.2 Fusion rules for N = 2

In this appendix we summarise the fusion rules of chiral and anti-chiral primary fields. In

general, there are three different types of fusion rules for N = 2 theories: the even fusion

rules and the two odd fusion rules [39]. These are characterised by the property that either

〈ϕ, φ1 ⊗ φ2〉 6= 0 even (B.4)

or

〈ϕ,
(
G±

−1/2φ1

)
⊗ φ2〉 6= 0 ± odd . (B.5)

Obviously, if φ1 is a chiral primary field, only the even and −odd fusion rule can be non-

trivial. This is also true if φ2 is a chiral primary, as can be seen from symmetry, or by

using (B.7) below.

First we want to show that in the even fusion rule only one field can appear, namely

the chiral primary with q = q1 + q2. It is clear by charge conservation that ϕ must have

q = q1 + q2; thus it suffices to show that ϕ must be chiral primary. This follows because

(2h− q)〈ϕ, φ1 ⊗ φ2〉 = 〈G−
1/2G

+
−1/2ϕ, φ1 ⊗ φ2〉

= 〈G+
−1/2ϕ, ∆(G+

−1/2)(φ1 ⊗ φ2)〉 = 0 , (B.6)

where ∆ denotes the comultiplication [40] which in this case takes on the simple form

∆(G+
−1/2) = G+

−1/2 ⊗ 1 + 1 ⊗G+
−1/2 . (B.7)
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This then vanishes, because both φ1 and φ2 are chiral primaries. In the case of interest,

h1 = h2 = 1
2 and q1 = q2 = 1, so that we have

φc ⊗ φc = [ϕh=1,q=2] ⊕ [G+
−1/2ϕ

+
q=1] , (B.8)

where ϕ+ has h+ > 1
2 , and [ψ] is the N = 2 representation generated from the state ψ.

B.3 Fusion rules for N = 4

Finally we want to collect some facts about the fusion rules of N = 4 representations.11

We shall only consider the NS sector. Furthermore, we shall only discuss the case that is

of interest in the current context, namely the fusion of two ‘massless’ representations with

j = 1
2 at k = 1. The massless representations are those that saturate the BPS bound,

which in this context means that they have h = 1
2 . The Virasoro highest weight states of

the representation with j = 1
2 therefore forms a doublet (φc, φa) with

L0φc = 1
2φc L0φa = 1

2φa

J0φc = φc J0φa = −φa

J+
0 φc = 0 J+

0 φa = φc

J−
0 φc = φa J−

0 φa = 0 .

(B.9)

With respect to the usual N = 2 subalgebra, φc is thus a chiral primary state, while φa

is an anti-chiral primary state. Note that the same is also true for the N = 2 subalgebra

generated by G′±
r , as was already noticed in [52].

To study the fusion rules of two such representations we first collect what we know

based on the fusion rules with respect to the two N = 2 subalgebras (the ones generated

by G±
r and G′±

r , respectively). Using the same arguments as in the previous section, and

combining the constraints coming from the two N = 2 algebras we know that the fusion

rules of two chiral primary fields are

φc ⊗ φc = [ϕh=1,q=2] ⊕ [G+
−1/2G

′+
−1/2ϕh,q=0] . (B.10)

Here, the conformal families are written with respect to either of the N = 2 algebras. On

the other hand, by the arguments of section 3.3 we also know that the fusion of φc and φa

does not allow for any odd fusion rules, and thus is of the form

φc ⊗ φa = [ϕ̃h,q=0] . (B.11)

Finally, we can use the constraints coming from the affine su(2) symmetry. At k = 1 we

know that the fusion of two j = 1/2 representations only leads to a j = 0 representation

(since j = 1 is not allowed at k = 1). Furthermore, if ϕ̃ is any N = 4 highest weight state

that appears in the fusion of φc with φa it then follows that

0 6= 〈ϕ̃ |φa(1)φc(0)〉 = 〈ϕ̃ | (J−
0 φc)(1)φc(0)〉

= 〈ϕ̃ |J−
1

(
φc(1)φc(0)

)
〉

= 〈J+
−1ϕ̃ |φc(1)φc(0)〉 . (B.12)

11As far as we are aware, this problem has not been addressed before in the literature.
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Here we have written out the explicit form of the scalar product and, in the second line,

have made use the comultiplication formula. Thus for every ϕ̃ that appears on the right

hand side of (B.11), J+
−1ϕ̃ must appear on the right hand side of (B.10)! As we have argued

before (based on the representation theory of the N = 4 algebra at k = 1), the first term

in (B.10) is of this form, since

ϕh=1,q=2 = J+
−1Ω . (B.13)

The second type of terms in (B.10) is actually also of this form, since at k = 1 we always

have the null relation (
J+
−1 −

1

2h
G+

−1/2G
′+
−1/2

)
ϕh,q=0 = 0 , (B.14)

where ϕh,q=0 is in the singlet representation of the su(2) zero modes, and we have assumed

that h > 0. This shows that we can write the above fusion rules more compactly as

φc ⊗ φc = [J+
−1ϕh,q=0] , φc ⊗ φa = [ϕh,q=0] , (B.15)

where ϕh,q=0 is in the singlet representation of N = 4 and both instances refer to the same

representation. In particular, the representations on the right hand side then combine into

one N = 4 representation, as must be the case (since the states on the left-hand sides also

lie in the same N = 4 representations). Thus we can write more succinctly

[φh=1/2,j=1/2] ⊗ [φh=1/2,j=1/2] = [ϕh,j=0] , (B.16)

where now the conformal families refer to N = 4 families. Unfortunately, we have not been

able to deduce any non-trivial constraints on the possible values of h that appear on the

right hand side, and the example of section 4.2 suggests that no such general constraint

exists.
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